Sequences and Series 1

- **1.** Evaluate:
 - **a.** $4 + 10 + 16 + \dots + 334$ **b.** $5\frac{1}{4} + 4\frac{1}{2} + 3\frac{3}{4} + \dots + (-3)$ **c.** $100 + 110 + 121 + \dots + 100(1 \cdot 1)^{10}$
- 2. In an arithmetic series, $u_9 = 15$ and $u_{10} = 12$. Calculate S_{10} .
- 3. In an arithmetic series, $u_3 = 17$ and $u_7 = 33$. Calculate S_{20} .
- 4. In an arithmetic series, a = 2 and d = 3.
 - a. Find the value of n for which $S_n = 610$
 - b. Find the least value for which $S_n > 1000$
- 5. For each of the following geometric series, prove that S_{∞} exists, and find its value.
 - a. $84 42 + 21 \dots$ b. $1 - \frac{1}{9} + \frac{1}{81} - \dots$ c. $64 + 16 + 4 + \dots$
- 6. In an infinite geometric series, $u_1 = 60$ and $u_3 = 15$. Show that there are 2 possible sums to infinity, and calculate them.